Mixed Convection in an Inclined Lid-driven Square Cavity with Sinusoidal Heating on Top Lid

نویسندگان

  • N. A. Bakar
  • R. Roslan
  • A. Karimipour
چکیده

Numerical study on the effect of inclination angle with sinusoidal heating on top moving lid in two-dimensional square cavity is investigated. The top lid is heated sinusoidally while the bottom wall is maintained at cold temperature. The vertical walls are insulated and the cavity is filled with water. Finite volume method and SIMPLE algorithm are employed to solve the dimensionless governing equations. The effect of Richardson number, ranging from 0.1 to 10.0 and inclination angle ranging from 0° to 60° on heat and fluid flow are investigated by utilizing the discretized equations in FORTRAN programming language. The Reynolds number and Prandtl number are fixed. Finally the solutions are discussed using a graphical approach. The results demonstrate that for the case of forced convection and mixed convection dominated regime, heat transfer rate increases with the increase of cavity inclination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Mixed Convection Flows in a Square Double Lid-Driven Cavity Partially Heated Using Nanofluid

A numerical study has been done through an Al2O3–water in a double lid-driven  square  cavity with various  inclination  angles  and discrete heat sources. The top and right moving walls are at low temperature. Half of  the  left and bottom walls are  insulated and  the  temperatures of the other half are kept at high. A large number of simulations for a wide  range  of Richardson  number ...

متن کامل

Numerical Study of Hydro-Magnetic Nanofluid Mixed Convection in a Square Lid-Driven Cavity Heated From Top and Cooled From Bottom

In the present research mixed convection flow through a copper-water nanofluid in a driven cavity in the presence of magnetic field is investigated numerically. The cavity is heated from top and cooled from bottom while its two vertical walls are insulated. The governing equations including continuity, N-S and energy equations are solved over a staggered grid system. The study is conducted for ...

متن کامل

Combined mixed convection and radiation simulation of inclined lid driven cavity

This paper presents a numerical investigation of the laminar mixed convection flow of a radiating gas in an inclined lid-driven cavity. The fluid is treated as a gray, absorbing, emitting, and scattering medium. The governing differential equations including continuity, momentum and energy are solved numerically by the computational fluid dynamics techniques (CFD) to obtain the velocity and tem...

متن کامل

Effect of Insulated Up and Down Lid Motion on the Heat Transfer of a Lid-Driven Cavity with an attached fin

This study investigates the effect of lid motion on the optimal characteristics a thin rectangular fin attached on the hot wall of a square lid-driven cavity with active vertical walls. The optimal fin position is studied for Richardson numbers of 0.1-10. The effect of mounting a rectangular fin with a thermal conductivity of 1 and 1000 on minimization and maximization of heat transfer through ...

متن کامل

Nusselt Number Estimation along a Wavy Wall in an Inclined Lid-driven Cavity using Adaptive Neuro-Fuzzy Inference System (ANFIS)

In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to determine the Nusselt number (Nu) along a wavy wall in a lid-driven cavity under mixed convection regime. Firstly, the main data set of input/output vectors for training, checking and testing of the ANFIS was prepared based on the numerical results of the lattice Boltzmann method (LBM). Then, the ANFIS was develope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017